در بخش تاریخچه و تعارف هوش مصنوعی، دو مفهوم بهعنوان ابزارهای اصلی شکوفایی این فناوری مطرح شدند. یادگیری ماشین یکی از ابزارهای اصلی توسعهی هوشمندی در ماشینها محسوب میشود که مفاهیم پایهای هوش را شکل میدهد. درواقع ماشینی که به یادگیری مجهز باشد، قدم اول را بهسمت هوشمند شدن برداشته است (دقیقا شبیه به انسان).
یادگیری ماشین، محور اصلی توسعهی هوش مصنوعی محسوب میشود
یادگیری ماشین در تعریف ساده با ارائهی دادههای وسیع به ماشین شروع میشود. سپس ماشین با استفاده از همان دادهها، چگونگی انجام وظایف خاص مانند درک صحبت یا برچسبگذاری تصاویر را میآموزد. داده، عنصر اصلی در توسعهی یادگیری ماشین محسوب میشود و بههمین دلیل در سالهای اخیر شاهد افزایش جمعآوری داده توسط شرکتهای فناوری بودهایم. درواقع امروز کلانداده و یادگیری ماشین، دو مفهوم درهم تنیدهشده هستند. مفهوم دیگری که مثلث بنیادی هوش مصنوعی را تکمیل میکند، شبکهی عصبی نام دارد.
شبکههای عصبی، کلید پردازشی در یادگیری ماشین هستند. چنین شبکههایی با الهام از ساختار نورونهای مغز انسان توسعه یافتهاند و از لایههای متعدد و متصل به هم الگوریتم موسوم به نورون تشکیل میشوند. لایههای الگوریتمی در شبکهی عصبی، داده را با یکدیگر تبادل میکنند. هر نورون، قابلیت یادگیری انجام وظیفهای خاص را دارد و با اولویتبندی ساختار دادهی درحال تبادل، فرایندی را روی آن انجام میدهد. در مسیر یادگیری شبکههای عصبی، اولویت و وطن دادههای ورودی تغییر میکند تا اینکه درنهایت خروجی موردنیاز از شبکه استخراج میشود. در چنین وضعیتی، شبکه بهنوعی انجام دادن یک وظیفهی خاص را آموخته است.
یادگیری عمیق از مفاهیم زادهشده از دل یادگیری ماشین است. شبکههای عصبی در چنین سبکی از یادگیری به شبکههایی گسترده توسعه مییابند و لایههای بسیار متعددی دارند. در یادگیری عمیق، هر لایه توانایی بررسی و پردازش دادههای بسیار عظیمی را خواهد داشت. یادگیری عمیق، موجب شد تا کامپیوترهای امروزی به تواناییهای مثالزدنی هوشمندی و یادگیری دست پیدا کنند که نمونههایی از آن را در تشخیص صحبت و بینایی کامپیوتری میبینیم.
پردازش تکاملی، یکی از حوزههای تحقیقات هوش مصنوعی محسوب میشود که با پیشرفت شبکههای عصبی متولد شد. محققان، با تکیه بر نظریههای داروین و مفاهیم جهش ژنتیکی، سبک جدیدی از هوش مصنوعی را مطرح میکنند. چنین رویکردی موجب توسعهی هوش مصنوعی با توانایی ساختن هوش مصنوعی دیگر شد. استفاده از الگوریتمهای تکاملی برای بهینهسازی شبکههای عصبی، به عبارت Neuroevolution شناخته میشود و در توسعهی نسلهای بعدی از سیستمهای هوشمند، کارایی بسیاری خواهد داشت. جدیدترین دستاوردها در این حوزه، در آزمایشگاه هوش مصنوعی اوبر رخ داد که از الگوریتمهای ژنتیکی برای آموزش شبکههای عصبی عمیق در جهت یادگیری پیشرفته استفاده کرد.
سیستمهای خبره، از مفاهیم دیگر توسعهیافته در مسیر هوش مصنوعی هستند. این سیستمها با قوانینی برنامهریزی میشوند که امکان تصمیمگیری براساس مجموعهای عظیم از داده را به آنها میدهد. چنین رویکردی، رفتار ذهن انسان را در حوزهای خاص، شبیهسازی میکند. از نمونههای سیستم خبره میتوان به خلبان خودکار در هواپیما اشاره کرد.
هوش مصنوعی
درباره این سایت